Study of An Example PV Pannel Definition of Variables: is the PV array output cu
ID: 2267752 • Letter: S
Question
Study of An Example PV Pannel Definition of Variables: is the PV array output current in amps V is the PV array output voltage in volts ns is the number of series cells np is the number of parallel groups of series cells is the charge of an electron k is Boltzmann's constant A is the p-n junction ideality factor T is the cell temperature in K Tr is the cell reference temperature Ir is the reverse saturation current at the cell reference temperature Tr Ec is the band-gap energy of the semiconductor used in the cell Iscr is the cell short-circuit current at reference temperature and radiation ki is the short circuit current temperature coefficient S is the solar radiation in mW/ cm2 The cell reverse saturation current Irs varies with the temperature. The photo-current Iph varies with the solar irradiation and the temperature.Explanation / Answer
----------------------------
a)
clc;
clear all;
close all;
np=2;ns=36;q=1.602e-19;k=1.38e-23;iscr=3.17;
a=1.5;irr=19.9693;tr=893;eg=0.825;ki=0.002;
v=0:0.1:30;temp=298;
for(s=60)
irs1=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));
id1=irs1*(exp(q*v/(k*temp*a*ns))-1);
iph1=(iscr+ki*(temp-tr))*s/100;
i1=np*(iph1-id1);
p1=i1.*v;
pmaxpoint=max(p1);
figure
subplot(2,1,1)
plot(v,i1)
axis([0 22 0 4.5])
title('bp350 I-V curve')
xlabel('voltage')
ylabel('current')
% power plot
subplot(2,1,2)
plot(v,p1)
axis([0 22 0 80])
title('bp350 power voltage curve')
xlabel('voltage')
ylabel('power')
legend('s=60')
end
for(s=80)
irs2=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));
id2=irs2*(exp(q*v/(k*temp*a*ns))-1);
iph2=(iscr+ki*(temp-tr))*s/100;
i2=np*(iph2-id2);
p2=i2.*v
pmaxpoint=max(p2);
figure
subplot(2,1,1)
plot(v,i2)
axis([0 22 0 4.5])
title('bp350 I-V curve')
xlabel('voltage')
ylabel('current')
% power plot
subplot(2,1,2)
plot(v,p2)
axis([0 22 0 80])
title('bp350 power voltage curve')
xlabel('voltage')
ylabel('power')
legend('s=80')
end
for(s=100)
irs3=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));
id3=irs3*(exp(q*v/(k*temp*a*ns))-1);
iph3=(iscr+ki*(temp-tr))*s/100;
i3=np*(iph3-id3);
p3=i3.*v
pmaxpoint=max(p3);
figure
subplot(2,1,1)
plot(v,i3)
axis([0 22 0 4.5])
title('bp350 I-V curve')
xlabel('voltage')
ylabel('current')
% power plot
subplot(2,1,2)
plot(v,p3)
axis([0 22 0 80])
title('bp350 power voltage curve')
xlabel('voltage')
ylabel('power')
legend('s=60')
end
b )
clc;
clear all;
close all;
np=2;ns=36;q=1.602e-19;k=1.38e-23;iscr=3.17;
a=1.5;irr=19.9693;tr=893;eg=0.825;ki=0.002;
v=0:0.1:30;temp=298;s=80;
for(temp=298)
irs1=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));
id1=irs1*(exp(q*v/(k*temp*a*ns))-1);
iph1=(iscr+ki*(temp-tr))*s/100;
i1=np*(iph1-id1);
p1=i1.*v;
pmaxpoint=max(p1);
figure
subplot(2,1,1)
plot(v,i1)
axis([0 22 0 4.5])
title('bp350 I-V curve')
xlabel('voltage')
ylabel('current')
% power plot
subplot(2,1,2)
plot(v,p1)
axis([0 22 0 80])
title('bp350 power voltage curve')
xlabel('voltage')
ylabel('power')
legend('temp=25')
end
for(temp=323)
irs2=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));
id2=irs2*(exp(q*v/(k*temp*a*ns))-1);
iph2=(iscr+ki*(temp-tr))*s/100;
i2=np*(iph2-id2);
p2=i2.*v
pmaxpoint=max(p2);
figure
subplot(2,1,1)
plot(v,i2)
axis([0 22 0 4.5])
title('bp350 I-V curve')
xlabel('voltage')
ylabel('current')
% power plot
subplot(2,1,2)
plot(v,p2)
axis([0 22 0 80])
title('bp350 power voltage curve')
xlabel('voltage')
ylabel('power')
legend('temp=50')
end
for(tepm=373)
irs3=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));
id3=irs3*(exp(q*v/(k*temp*a*ns))-1);
iph3=(iscr+ki*(temp-tr))*s/100;
i3=np*(iph3-id3);
p3=i3.*v
pmaxpoint=max(p3);
figure
subplot(2,1,1)
plot(v,i3)
axis([0 22 0 4.5])
title('bp350 I-V curve')
xlabel('voltage')
ylabel('current')
% power plot
subplot(2,1,2)
plot(v,p3)
axis([0 22 0 80])
title('bp350 power voltage curve')
xlabel('voltage')
ylabel('power')
legend('temp=100')
end