Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Cost Reduction Proposal: IRR, NPV, and Payback Period JB Chemical currently disc

ID: 2570242 • Letter: C

Question

Cost Reduction Proposal:
IRR, NPV, and Payback Period
JB Chemical currently discharges liquid waste into Calgary's municipal sewer system. However, the Calgary municipal government has informed JB that a surcharge of $4 per thousand cubic liters will soon be imposed for the discharge of this waste. This has prompted management to evaluate the desirability of treating its own liquid waste.

A proposed system consists of three elements. The first is a retention basin, which would permit unusual discharges to be held and treated before entering the downstream system. The second is a continuous self-cleaning rotary filter required where solids are removed. The third is an automated neutralization process required where materials are added to control the alkalinity-acidity range.

The system is designed to process 600,000 liters a day. However, management anticipates that only about 200,000 liters of liquid waste would be processed in a normal workday. The company operates 300 days per year. The initial investment in the system would be $450,000, and annual operating costs are predicted to be $150,000. The system has a predicted useful life of eight years and a salvage value of $50,000.

(a) Determine the project's net present value at a discount rate of 12 percent. (Round to the nearest whole number.)
$ Answer

(b) Determine the project's approximate internal rate of return. (Round answer to the nearest whole percentage.)
Answer %

(c) Determine the project's payback period.
Answer in years

Explanation / Answer

a)

Year

Cash Flow(C)

PV Factor(F) '@ 12 %

PV(=C x F)

0

$       (450,000)

1/(1+0.12)^0

1

$ (450,000.00)

1

$           90,000

1/(1+0.12)^1

0.89285714

$      80,357.14

2

$           90,000

1/(1+0.12)^2

0.79719388

$      71,747.45

3

$           90,000

1/(1+0.12)^3

0.71178025

$      64,060.22

4

$           90,000

1/(1+0.12)^4

0.63551808

$      57,196.63

5

$           90,000

1/(1+0.12)^5

0.56742686

$      51,068.42

6

$           90,000

1/(1+0.12)^6

0.50663112

$      45,596.80

7

$           90,000

1/(1+0.12)^7

0.45234922

$      40,711.43

8

$         140,000

1/(1+0.12)^8

0.40388323

$      56,543.65

NPV

$      17,281.74

Cash flow from year 1st to 7th = ($ 4 x 200 x 300) - $ 150,000 = $ 240,000 - $ 150,000 = $ 90,000

Cash flow from year 8th = $ 90,000 + $ 50,000 = $ 140,000

NPV is $ 17,282

b)

Let’s calculate IRR by trial and error method.

Let’s calculate NPV at 13 %.

Year

Cash Flow('C)

PV Factor(F) '@ 13 %

PV(=C x F)

0

$       (450,000)

1/(1+0.13)^0

1

$ (450,000.00)

1

$           90,000

1/(1+0.13)^1

0.88495575

$      79,646.02

2

$           90,000

1/(1+0.13)^2

0.78314668

$      70,483.20

3

$           90,000

1/(1+0.13)^3

0.69305016

$      62,374.51

4

$           90,000

1/(1+0.13)^4

0.61331873

$      55,198.69

5

$           90,000

1/(1+0.13)^5

0.54275994

$      48,848.39

6

$           90,000

1/(1+0.13)^6

0.48031853

$      43,228.67

7

$           90,000

1/(1+0.13)^7

0.42506064

$      38,255.46

8

$         140,000

1/(1+0.13)^8

0.37615986

$      52,662.38

NPV

$            697.32

As NPV is + ve, let’s calculate NPV at 14 %.

Year

Cash Flow('C)

PV Factor(F) '@ 14 %

PV(=C x F)

0

$       (450,000)

1/(1+0.13)^0

1

$ (450,000.00)

1

$           90,000

1/(1+0.13)^1

0.87719298

$      78,947.37

2

$           90,000

1/(1+0.13)^2

0.76946753

$      69,252.08

3

$           90,000

1/(1+0.13)^3

0.67497152

$      60,747.44

4

$           90,000

1/(1+0.13)^4

0.59208028

$      53,287.22

5

$           90,000

1/(1+0.13)^5

0.51936866

$      46,743.18

6

$           90,000

1/(1+0.13)^6

0.45558655

$      41,002.79

7

$           90,000

1/(1+0.13)^7

0.39963732

$      35,967.36

8

$         140,000

1/(1+0.13)^8

0.35055905

$      49,078.27

NPV

$    (14,974.30)

IRR = R1 + [NPV1 x (R2-R1)%/(NPV1-NPV2)]

       = 13 % + $ 697.32 x (14 -13) % /($ 697.32 -(- $ 14,974.30)

       = 13 % + $ 697.32 x 1 % / $ 697.32 + $ 14,974.30

       = 13 % + $ 6.97/$ 15,671.62

       = 13 % + 0.00044496

       = 13 % + 0.044496

       = 13.044 % or 13 %

IRR is 13 %

c)

Year

Cash Flow('C)

Cumulative cash flow

0

$       (450,000)

$        (450,000)

1

$           90,000

$        (360,000)

2

$           90,000

$        (270,000)

3

$           90,000

$        (180,000)

4

$           90,000

$          (90,000)

5

$           90,000

$             0          

6

$           90,000

$             90,000

7

$           90,000

$          180,000

8

$         140,000

$          320,000

Payback period = A + B/C

Where,
A = last period with a negative cumulative cash flow = 4 years
B = absolute value of cumulative cash flow at the end of the period A = $ 90,000
C = total cash flow during the period after A = $ 90,000

Payback period = 4 + $ 90,000/$ 90,000 = 4 + 1 = 5 years.

Year

Cash Flow(C)

PV Factor(F) '@ 12 %

PV(=C x F)

0

$       (450,000)

1/(1+0.12)^0

1

$ (450,000.00)

1

$           90,000

1/(1+0.12)^1

0.89285714

$      80,357.14

2

$           90,000

1/(1+0.12)^2

0.79719388

$      71,747.45

3

$           90,000

1/(1+0.12)^3

0.71178025

$      64,060.22

4

$           90,000

1/(1+0.12)^4

0.63551808

$      57,196.63

5

$           90,000

1/(1+0.12)^5

0.56742686

$      51,068.42

6

$           90,000

1/(1+0.12)^6

0.50663112

$      45,596.80

7

$           90,000

1/(1+0.12)^7

0.45234922

$      40,711.43

8

$         140,000

1/(1+0.12)^8

0.40388323

$      56,543.65

NPV

$      17,281.74