Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please help with the below problem. I don\'t understand how to solve. Please sho

ID: 2766616 • Letter: P

Question

Please help with the below problem. I don't understand how to solve. Please show work and steps so I will understand.

Apply cluster analysis to the numerical data in the excel file credit approval decisions. Analyze the clusters and determine if cluster analysis would be a useful classification method for approving or rejecting loan application.

Modified Credit Approval Decisions                                                

                                                       

Homeowner    Credit Score    Years of Credit History          Revolving Balance      Revolving Utilization            Decision

1          725      20        $11,320          25%     1

1          573      9          $7,200            70%     0

1          677      11        $20,000          55%     1

0          625      15        $12,800          65%     0

0          527      12        $5,700            75%     0

1          795      22        $9,000            12%     1

0          733      7          $35,200          20%     1

0          620      5          $22,800          62%     0

1          591      17        $16,500          50%     0

1          660      24        $9,200            35%     1

1          700      19        $22,000          18%     1

1          500      16        $12,500          83%     0

1          565      6          $7,700            70%     0

0          620      3          $37,400          87%     0

1          774      13        $6,100            7%       1

1          802      10        $10,500          5%       1

0          640      7          $17,300          59%     0

0          523      14        $27,000          79%     0

1          811      20        $13,400          3%       1

0          763      2          $11,200          70%     0

0          555      4          $2,500            100%   0

0          617      9          $8,400            34%     0

1          642      13        $16,000          25%     1

0          688      3          $3,300            11%     1

1          649      12        $7,500            5%       1

1          695      15        $20,300          22%     1

1          701      9          $11,700          15%     1

0          635      7          $29,100          85%     0

0          507      2          $2,000            100%   0

1          677      12        $7,600            9%       1

0          485      5          $1,000            80%     0

0          582      3          $8,500            65%     0

1          699      17        $12,800          27%     1

1          703      22        $10,000          20%     1

0          585      18        $31,000          78%     0

1          620      8          $16,200          55%     0

1          695      16        $9,700            11%     1

1          774      13        $6,100            7%       1

1          802      10        $10,500          5%       1

0          640      7          $17,300          59%     0

0          536      14        $27,000          79%     0

1          801      20        $13,400          3%       1

0          760      2          $11,200          70%     0

0          567      4          $2,200            95%     0

0          600      10        $12,050          81%     0

1          702      11        $11,700          15%     1

1          636      8          $29,100          85%     0

0          509      3          $2,000            100%   0

0          595      18        $29,000          78%     0

1          733      15        $13,000          24%     1

                                                           

New Data to Classify                                                

                                                           

Homeowner    Credit Score    Years of Credit History          Revolving Balance      Revolving Utilization            Decision

1          700       8          $21,000          15%    

0          520      1          $4,000             90%    

1          650      10        $8,500.00        25%    

0          602      7          $16,300.00      70%    

0          549      2          $2,500.00        90%    

1          742      15        $16,700.00      18%    

Explanation / Answer

After sorting above observations based on revolving utilisation, we would receive few observation having high revolving utilisation have decision as "1" & few observation with low revolving utilisation have decision as "0". Following are such observation:

After sorting such observation based on credit score, we come to following rule that:

If any observation has Revolving Utilisation < 56 % & Credit Score > 620, Decision is Yes i.e. "1". Other wise decision is No i.e. "0".

Applying above rule to new data, following are decision to be taken:

Homeowner Credit Score Years of Credit History Revolving Balance Revolving Utilization Decision