Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider the integral I = doubleintegral_R^2 e^-(x^2 = y^2) dA= integral_-infini

ID: 2878508 • Letter: C

Question

Consider the integral I = doubleintegral_R^2 e^-(x^2 = y^2) dA= integral_-infinity^infinity integral_-infinity^infinity e^-(x^2 = y^2) dy dx = lim_n rightarrow infinity doubleintegral_D_a e^-9x^2 + y^2)dA where D_a is the disk with radius a and center the origin, Prove that integral_-infinity^infinity integral_-infinity^infinity e^-(x^2 + y^2) dA = pi An equivalent definition of I is doubleintegral_R^2 e^-(x^2 + y^2) dA = lim_a rightarrow infinity doubleintegral_Sa e^-(x^2 + y^2)dA where S_a is the square with vertices (plusminus am plusminus a). Use this to show that integral_-infinity^infinity e^-x^2 dx integral_-infinity^infinity e^-y^2 dy = pi

Explanation / Answer

in polar coordinates

x=rcos, y=rsin

x2+y2=r2

x2+y2=a2

0<=<=2,0<=r<=a

dA =r dr d

[- to] [- to ]e-(x^2+y^2) dy dx

=lima->[0 to 2] [0 to a] e-(r^2)r dr d

=lima->[0 to 2][0 to a] (-1/2)e-(r^2) d

=lima->[0 to 2]  (-1/2)(e-(a^2)-e-(0^2)) d

=lima->[0 to 2]  (-1/2)(e-(a^2)-1) d

=lima->[0 to 2]  (1/2)(1-e-(a^2)) d

=lima->[0 to 2]  (1/2)(1-e-(a^2))

=lima-> (1/2)(1-e-(a^2))(2-0)

=lima-> (1-e-(a^2))

=(1-0)

=

------------------------------------------------------

b)[- to] [- to ]e-(x^2+y^2) dy dx=

=lima->[-a to a] [-a to a]e-x^2e-y^2 dy dx=

=lima->[-a to a] e-x^2dx[-a to a]e-y^2 dy =

=[- to ] e-x^2dx[-to ]e-y^2 dy =