Please answer each question with complete work. Do not have wrong answers, pleas
ID: 2970465 • Letter: P
Question
Please answer each question with complete work. Do not have wrong answers, please.
Explanation / Answer
5)
a)
||u|| = sqrt <u,u> = sqrt ( 1*1+2*0*0+-1*-1) = sqrt(2)
||v|| = sqrt <v,v> = sqrt ( 1*1+2*1*1+1*1) = sqrt(4)=2
u-v = (0,-1,-2), so ||u-v|| = sqrt(0+2*-1*-1+-2*-2)=sqrt(6)
b) cos(theta) = <u,v>/(||u||||v||) = 0, so u and v are perpendicular, theta = Pi/2
c)
Since u and v are orthogonal :
proj_v(u) = <v,u>/<v,v> v = (0,0,0)
proj_u(v) = <u,v>/<u,u> u = (0,0,0)
6)
a)
||f|| = sqrt <f,f> = sqrt (int(-1<t<1) t^4 =sqrt( [t^5/5] ) = sqrt(2/5)
||g||= sqrt <g,g> = sqrt(int(-1<t<1) e^(-2t) = sqrt(1/2(e^2-e^(-2)))=sqrt(sinh(2)) (hyperpolyic sinus)
We can use : ||f-g|| = sqrt ( ||f||^2-2<f,g>+||g||^2 ) or do all the computation by hand
<f,g> = int t^2 e^(-t) = -t^2e^(-t) + int 2t e^(-t) = [-t^2e^(-t) -2te^(-t) -2e^(-t)](-1<t<1) using integration by part
<f,g> = e-5e^(-1)
So ||f-g|| = sqrt ( 2/5+sinh(2) -2 (e-5e^(-1))
b) cos(theta) = <f,g>/||f|||g|| = sqrt ( 2/5+sinh(2) -2 (e-5e^(-1)) / (sqrt(2/5)sqrt(sinh(2)) ) = 1.25
so theta ~ acos(1.25) ~ 0.69 radians (39.75