Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

In the table below we consider a regression model that include SES and race dumm

ID: 3323713 • Letter: I

Question

In the table below we consider a regression model that include SES and race dummy variables (model 1) and SES, the race dummy variables, and the interaction of SES with the dummy variables (model 2). For example, the variable SES: ASIAN is obtained by multiplying SES times ASIAN Table 6: variable log(MATH5) SES AMERICAN INDIAN ASIAN HISPANIC, RACE NOT SPECIFIEID HISPANIC, RACE SPECIFIED MORE THAN ONE RACE PACIFIC ISLANDER WHITE SES:AMERICAN INDIAN SES:ASIAN SES:HISPANIC, RACE NOT SPECIFIED SES:HISPANIC, RACE SPECIFIED SES:MORE THAN ONE RACE SES:PACIFIC ISLANDER SES: WHITE Constant 0.087 (0.005) 0.135 (0.026) 0.044 (0.031) 0.016 (0.048) 0.200 (0.017) 0.206 (0.027) 0.123 (0.020) 0157 (0.029) 0.134 (0.016 0.161 (0.025) 0.144 (0.021) 0.164 (0.034) 0.090 (0.036 0.024 (0.054) 0.174 (0.012) 0.203 (0.018) 0.059 (0.076) -0.028 (0.033) -0.070 (0.045) -0.052 (0.036) -0.043 (0.038) 0.127 (0.079) -0.054 (0.026) 4.430 (0.017 4.450 (0.012 Observations 5,359 0.103 0.101 Ad

Explanation / Answer

F = ((R^2_ur - R^2_r)/q) / ((1- R^2_ur) /(n-k-1))
= ((0.105 - 0.103)/7)/((1-0.105^2)/(5359 - 15-1))
= 1.54358

df1 = 7 , df2 = 5343

p-value = P( F > 1.54358 ) =0.15

since p-value > 0.01
we fail to reject the null