Case- Inferential Statistics: Transmission Failure Data Analysis Background: A c
ID: 3325184 • Letter: C
Question
Case- Inferential Statistics: Transmission Failure Data Analysis
Background: A consumer research company looked at customer satisfaction with performance to automobiles produced by one major Detroit manufacturer. A questionnaire sent to owners of one of the manufacturer’s full-sized cars revealed several complaints about EARLY transmission problems. To learn more about transmission failures, the research company gathered some sample of actual transmission repairs provided by a transmission repair firm in the Detroit area where they did note the amount of mileage on the transmission when it came in for repair.
Part 5: Test a claim. If the manufacturer of the transmission claims that their transmissions should last at least 72,000 miles prior to needing any repair. So we want to test whether they last LESS THAN that claimed figure appropriately using alpha=.05. (show all steps in a formal presentation of the hypothesis test solution including the test statistic calculated by hand/formula).
STEP 0: What assumptions are being made in order for these results to be valid
STEP 1: STATE both Ho and Ha and make sure a parameter symbol is in each one (proper parameter symbol).
STEP 2: state alpha level
STEP 3: Calculate the Test statistic by FORMULA in this part (yes, showing all work) and also use your appropriate calculator function to find the correct p-value and state here as well.
STEP 4: Give the decision (Reject Ho and Fail to Reject Ho (aka: Retain Ho) and give support (compare the p-value to the alpha level as your support).
STEP 5: Give the conclusion (sentence form in proper format) , make sure alpha level is given in the beginning of that sentence.
Mileage Data:
25066 32464 32534 32609 35662 37831 39323 40001 53402 53500 59465 59817 59902 61978 63436 64090 64342 64544 65605 66998 67202 67998 69568 69922 72069 73341 74276 74425 77098 77437 77539 79294 82256 85092 85288 85586 85861 86813 88798 89341 89641 92857 94219 95774 101769 116269 116803 118444 121352 138114Explanation / Answer
X
X- u
(X-u)^2
25066
-48274.3
2330408040
32464
-40876.3
1670871902
32534
-40806.3
1665154120
32609
-40731.3
1659038800
35662
-37678.3
1419654291
37831
-35509.3
1260910386
39323
-34017.3
1157176699
40001
-33339.3
1111508924
53402
-19938.3
397535806.9
53500
-19840.3
393637504.1
59465
-13875.3
192523950.1
59817
-13523.3
182879642.9
59902
-13438.3
180587906.9
61978
-11362.3
129101861.3
63436
-9904.3
98095158.49
64090
-9250.3
85568050.09
64342
-8998.3
80969402.89
64544
-8796.3
77374893.69
65605
-7735.3
59834866.09
66998
-6342.3
40224769.29
67202
-6138.3
37678726.89
67998
-5342.3
28540169.29
69568
-3772.3
14230247.29
69922
-3418.3
11684774.89
72069
-1271.3
1616203.69
73341
0.7
0.49
74276
935.7
875534.49
74425
1084.7
1176574.09
77098
3757.7
14120309.29
77437
4096.7
16782950.89
77539
4198.7
17629081.69
79294
5953.7
35446543.69
82256
8915.7
79489706.49
85092
11751.7
138102452.9
85288
11947.7
142747535.3
85586
12245.7
149957168.5
85861
12520.7
156767928.5
86813
13472.7
181513645.3
88798
15457.7
238940489.3
89341
16000.7
256022400.5
89641
16300.7
265712820.5
92857
19516.7
380901578.9
94219
20878.7
435920113.7
95774
22433.7
503270895.7
101769
28428.7
808190983.7
116269
42928.7
1842873284
116803
43462.7
1889006291
118444
45103.7
2034343754
121352
48011.7
2305123337
138114
64773.7
4195632212
From Column1 mean = Total / 50 = 3667015/50 = 73340.3
Variance = Column3 total / 50 = 607547093.8
Std. deviation = sq.rt(607547093.8) = 24648.47
Population mean = 72000
H0: transmissions should last at least 72,000 miles prior to needing any repair
Ha: transmissions should be less than 72,000 miles prior to needing any repair
Z= (73340.3 – 72000)/ (24648.47/sq.rt(50))
Z = 0.38
Select alpha = 0.05 Thus, Z = 1.96
P(Z>0.38) = 0.352
As P value is greater than 0.05 (alpha level) we fail to reject null hypothesis or we accept null hypothesis
X
X- u
(X-u)^2
25066
-48274.3
2330408040
32464
-40876.3
1670871902
32534
-40806.3
1665154120
32609
-40731.3
1659038800
35662
-37678.3
1419654291
37831
-35509.3
1260910386
39323
-34017.3
1157176699
40001
-33339.3
1111508924
53402
-19938.3
397535806.9
53500
-19840.3
393637504.1
59465
-13875.3
192523950.1
59817
-13523.3
182879642.9
59902
-13438.3
180587906.9
61978
-11362.3
129101861.3
63436
-9904.3
98095158.49
64090
-9250.3
85568050.09
64342
-8998.3
80969402.89
64544
-8796.3
77374893.69
65605
-7735.3
59834866.09
66998
-6342.3
40224769.29
67202
-6138.3
37678726.89
67998
-5342.3
28540169.29
69568
-3772.3
14230247.29
69922
-3418.3
11684774.89
72069
-1271.3
1616203.69
73341
0.7
0.49
74276
935.7
875534.49
74425
1084.7
1176574.09
77098
3757.7
14120309.29
77437
4096.7
16782950.89
77539
4198.7
17629081.69
79294
5953.7
35446543.69
82256
8915.7
79489706.49
85092
11751.7
138102452.9
85288
11947.7
142747535.3
85586
12245.7
149957168.5
85861
12520.7
156767928.5
86813
13472.7
181513645.3
88798
15457.7
238940489.3
89341
16000.7
256022400.5
89641
16300.7
265712820.5
92857
19516.7
380901578.9
94219
20878.7
435920113.7
95774
22433.7
503270895.7
101769
28428.7
808190983.7
116269
42928.7
1842873284
116803
43462.7
1889006291
118444
45103.7
2034343754
121352
48011.7
2305123337
138114
64773.7
4195632212