Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Here is the question I need help with Write a class definition for a complex num

ID: 3613588 • Letter: H

Question

Here is the question I need help with Write a class definition for a complex number.

The class definition should include variables that represent thereal and imaginary part of the number.

You should include a constructor that allows you to specify thereal and imaginary parts and a default constructor.

You should also include functions that allow you to add, substract,multiply and divide two complex numbers. The functions return typeshould be complex number.

Also include a function called toString which displays the complexnumber. HERE IS MY CODE # include<iostream> using namespace std class complexNumber {      public:          complexNumber();           complexNumber(doubleinputreal, double inputimaginary);          complexNumber add(complexNumber);           complexNumbersubtract(complexNumber);          complexNumber multiply(complexNumber);          complexNumber divide(complexNumber);           void toString(); private:           double real;           double imaginary; }; int main() {    complexNumber number1=complexNumberinput;    complexNumber number2=complexNumberinput;    complexNumber sum=number1.add(number2);    complexNumber difference=number1.subtract(number2);    complexNumber product=number1.multiply(number2);    complexNumber quotient=number1.divide(number2);    sum.toSring();    difference.toString();    product.toString();    quotient.toString(); } //Addi˜tion complexNumber::add(complexNumber input) {       complexNumber temp; HOW DO I CONTINUE FROM HERE??
Here is the question I need help with Write a class definition for a complex number.

The class definition should include variables that represent thereal and imaginary part of the number.

You should include a constructor that allows you to specify thereal and imaginary parts and a default constructor.

You should also include functions that allow you to add, substract,multiply and divide two complex numbers. The functions return typeshould be complex number.

Also include a function called toString which displays the complexnumber. HERE IS MY CODE # include<iostream> using namespace std class complexNumber {      public:          complexNumber();           complexNumber(doubleinputreal, double inputimaginary);          complexNumber add(complexNumber);           complexNumbersubtract(complexNumber);          complexNumber multiply(complexNumber);          complexNumber divide(complexNumber);           void toString(); private:           double real;           double imaginary; }; int main() {    complexNumber number1=complexNumberinput;    complexNumber number2=complexNumberinput;    complexNumber sum=number1.add(number2);    complexNumber difference=number1.subtract(number2);    complexNumber product=number1.multiply(number2);    complexNumber quotient=number1.divide(number2);    sum.toSring();    difference.toString();    product.toString();    quotient.toString(); } //Addi˜tion complexNumber::add(complexNumber input) {       complexNumber temp; HOW DO I CONTINUE FROM HERE??

Explanation / Answer

Dear..      Am givingyou this logic in java. Try to implement this in yourown.
Code:
      public class ComplexDemo {
  public static void main(String[] args) {
  public static void main(String[] args)   {
    Complex c = new Complex(3,  5);
    Complex d = new Complex(2, -2);
    System.out.println(c);
    System.out.println(c + ".getReal() = " + c.getReal());
    System.out.println(c + " + " + d + " = " + c.add(d));
    System.out.println(c + " + " + d + " = " + Complex.add(c, d));
    System.out.println(c + " * " + d + " = " + c.multiply(d));
    System.out.println(Complex.divide(c, d));
  }
}
class Complex {
    private double r;
    private double i;
         Complex(double rr, double ii)      {      r = rr;
     i = ii;
   }
     public String toString()    {
    StringBuffer sb = new StringBuffer().append(r);
     if (i>0)
       sb.append('+');
     return sb.append(i).append('i').toString();
  }
  public double getReal()   {
    return r;
  }
  public double getImaginary()   {
    return r;
  }
  public double getImaginary()    {
    return i;
   }
    public double magnitude()
   {

    return Math.sqrt(r*r + i*i);
    }      public Complex add(Complex other)   {
    return add(this, other);
   }
  public static Complex add(Complex c1, Complex c2)   {
     return new Complex(c1.r+c2.r, c1.i+c2.i);
   }
  public Complex subtract(Complex other)   {
    return subtract(this, other);
}
  public static Complex subtract(Complex c1, Complex c2)   {
    return new Complex(c1.r-c2.r, c1.i-c2.i);
  }
  public Complex multiply(Complex other)   {
    return multiply(this, other);
  }
   public static Complex multiply(Complex c1, Complex c2)    {
     return new Complex(c1.r*c2.r - c1.i*c2.i, c1.r*c2.i + c1.i*c2.r);
   }

  public static Complex divide(Complex c1, Complex c2) {
    return new Complex(
      (c1.r*c2.r+c1.i*c2.i)/(c2.r*c2.r+c2.i*c2.i),
      (c1.i*c2.r-c1.r*c2.i)/(c2.r*c2.r+c2.i*c2.i));
  }
    public boolean equals(Object o)   {       
  if (!(o instanceof Complex))
         throw new IllegalArgumentException("Complex.equals argument must be a Complex");
      Complex other = (Complex)o;
     return r == other.r && i == other.i;
  }   public int hashCode()     
    {

     return (int)(r)|(int)i;
    }
}