Tools Inoduction to Alp sign In Home Page ThmbnalsX Export PDF Create Por Edit P
ID: 3695144 • Letter: T
Question
Tools Inoduction to Alp sign In Home Page ThmbnalsX Export PDF Create Por Edit PDF Adobe Acrobat Pro DC Commen Combine Files afa & Sign Send for Signature Figere 244 The esecutiee ed the Belinan Food a ponthm. The iorce is etes s. The d tes appear wihin the ventices, and shaded edges indicate predecessor values if edge (, ) hadod. then v. =M· lntes particular example, each pass nelanes the edges in the ole" Send &Trak; Erst pass oer the elges(bh t The stuaion affer each sucessine pass ouer the edgs. The Lemma 242 Let G -(V. E) be a weighted, directed graph with source s and weight fune tion w : E R, and assume that G contains no negative-weight cycles that are reachable from s. Then, after the IV terations of the for loop of lines 2-4 of BELLMAN-FORD, we have v.d m (s,v) for all vertices v that are reachable from a 615 Store and share es in theExplanation / Answer
Program:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
// a structure to represent a weighted edge in graph
struct Edge
{
int src, dest, weight;
};
// a structure to represent a connected, directed and
// weighted graph
struct Graph
{
// V-> Number of vertices, E-> Number of edges
int V, E;
// graph is represented as an array of edges.
struct Edge* edge;
};
// Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
struct Graph* graph =
(struct Graph*) malloc( sizeof(struct Graph) );
graph->V = V;
graph->E = E;
graph->edge =
(struct Edge*) malloc( graph->E * sizeof( struct Edge ) );
return graph;
}
// A utility function used to print the solution
void printArr(int dist[], int n)
{
printf("Vertex Distance from Source -------------------------- ");
for (int i = 0; i < n; ++i)
printf(" %d %d ", i, dist[i]);
}
// The main function that finds shortest distances from src to
// all other vertices using Bellman-Ford algorithm. The function
// also detects negative weight cycle
void BellmanFord(struct Graph* graph, int src)
{
int k=0;
int V = graph->V;
int E = graph->E;
int dist[V];
// Step 1: Initialize distances from src to all other vertices
// as INFINITE
for (int i = 0; i < V; i++)
dist[i] = INT_MAX;
dist[src] = 0;
// Step 2: Relax all edges |V| - 1 times. A simple shortest
// path from src to any other vertex can have at-most |V| - 1
// edges
for (int i = 1; i <= V-1; i++)
{
for (int j = 0; j < E; j++)
{
int u = graph->edge[j].src;
int v = graph->edge[j].dest;
int weight = graph->edge[j].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
dist[v] = dist[u] + weight;
}
printf(" Phase %d: ",k++);
printArr(dist, V);
}
// Step 3: check for negative-weight cycles. The above step
// guarantees shortest distances if graph doesn't contain
// negative weight cycle. If we get a shorter path, then there
// is a cycle.
for (int i = 0; i < E; i++)
{
int u = graph->edge[i].src;
int v = graph->edge[i].dest;
int weight = graph->edge[i].weight;
if (dist[u] != INT_MAX && dist[u] + weight < dist[v])
printf("Graph contains negative weight cycle");
}
return;
}
// Driver program to test above functions
int main()
{
/* Let us create the graph given in above example */
int V = 6; // Number of vertices in graph
int E = 10; // Number of edges in graph
struct Graph* graph = createGraph(V, E);
// add edge 0-1 (or A-B in above figure)
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 10;
// add edge 0-2 (or A-C in above figure)
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 5;
// add edge 1-2 (or B-C in above figure)
graph->edge[2].src = 1;
graph->edge[2].dest = 2;
graph->edge[2].weight = 2;
// add edge 1-0 (or B-C in above figure)
graph->edge[2].src = 1;
graph->edge[2].dest = 0;
graph->edge[2].weight = -8;
// add edge 2-4 (or A-E in above figure)
graph->edge[4].src = 2;
graph->edge[4].dest = 4;
graph->edge[4].weight = 2;
// add edge 2-5 (or D-C in above figure)
graph->edge[5].src = 2;
graph->edge[5].dest = 5;
graph->edge[5].weight = 1;
// add edge 3-2 (or D-B in above figure)
graph->edge[6].src = 3;
graph->edge[6].dest = 2;
graph->edge[6].weight = 7;
// add edge 4-3 (or E-D in above figure)
graph->edge[7].src = 4;
graph->edge[7].dest = 3;
graph->edge[7].weight = 3;
// add edge 4-5 (or E-D in above figure)
graph->edge[8].src = 4;
graph->edge[8].dest = 5;
graph->edge[8].weight = -4;
// add edge 5-3 (or E-D in above figure)
graph->edge[9].src = 4;
graph->edge[9].dest = 5;
graph->edge[9].weight = -1;
BellmanFord(graph, 0);
return 0;
}
Sample output:
Phase 0:
Vertex Distance from Source
--------------------------
0 0
1 10
2 5
3 10
4 7
5 3
Phase 1:
Vertex Distance from Source
--------------------------
0 0
1 10
2 5
3 10
4 7
5 3
Phase 2:
Vertex Distance from Source
--------------------------
0 0
1 10
2 5
3 10
4 7
5 3
Phase 3:
Vertex Distance from Source
--------------------------
0 0
1 10
2 5
3 10
4 7
5 3
Phase 4:
Vertex Distance from Source
--------------------------
0 0
1 10
2 5
3 10
4 7
5 3