Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

I need help with the solution to the Chapter 1 Performance Lawn Equipment case s

ID: 449580 • Letter: I

Question

I need help with the solution to the Chapter 1 Performance Lawn Equipment case study in Business Analytics text by James R. Evans. The problem statement is:

"An important part of planning manufacturing capacity is having a good forecast of sales. Elizabeth Burke is interested in forecasting sales of mowers in NA, Eur and Pacific regions as well as industry mower sales to assess future changes in market share. She also wants to forecast future increases in market share. She also wants to forecast future increases in production costs. Develop forecasting models for these data and prepare a formal report of your result with appropriate charts and outputs.

Can you assist me with how to go about figuring 1st, what model to use and the initial steps needed to solve these problem.

This is the information from the mower unit sales:

Month

NA

SA

Europe

Pacific

China

World

Jan-10

6000

200

720

100

0

7020

Feb-10

7950

220

990

120

0

9280

Mar-10

8100

250

1320

110

0

9780

Apr-10

9050

280

1650

120

0

11100

May-10

9900

310

1590

130

0

11930

Jun-10

10200

300

1620

120

0

12240

Jul-10

8730

280

1590

140

0

10740

Aug-10

8140

250

1560

130

0

10080

Sep-10

6480

230

1590

130

0

8430

Oct-10

5990

220

1320

120

0

7650

Nov-10

5320

210

990

130

0

6650

Dec-10

4640

180

660

140

0

5620

Jan-11

5980

210

690

140

0

7020

Feb-11

7620

240

1020

150

0

9030

Mar-11

8370

250

1290

140

0

10050

Apr-11

8830

290

1620

150

0

10890

May-11

9310

330

1650

130

0

11420

Jun-11

10230

310

1590

140

0

12270

Jul-11

8720

290

1560

150

0

10720

Aug-11

7710

270

1530

140

0

9650

Sep-11

6320

250

1590

150

0

8310

Oct-11

5840

250

1260

160

0

7510

Nov-11

4960

240

900

150

0

6250

Dec-11

4350

210

660

150

0

5370

Jan-12

6020

220

570

160

0

6970

Feb-12

7920

250

840

150

0

9160

Mar-12

8430

270

1110

160

0

9970

Apr-12

9040

310

1500

170

0

11020

May-12

9820

360

1440

160

0

11780

Jun-12

10370

330

1410

170

0

12280

Jul-12

9050

310

1440

160

0

10960

Aug-12

7620

300

1410

170

0

9500

Sep-12

6420

280

1350

180

0

8230

Oct-12

5890

270

1080

180

0

7420

Nov-12

5340

260

840

190

0

6630

Dec-12

4430

230

510

180

0

5350

Jan-13

6100

250

480

200

0

7030

Feb-13

8010

270

750

190

0

9220

Mar-13

8430

280

1140

200

0

10050

Apr-13

9110

320

1410

210

0

11050

May-13

9730

380

1340

190

0

11640

Jun-13

10120

360

1360

200

0

12040

Jul-13

9080

320

1410

200

0

11010

Aug-13

7820

310

1490

210

0

9830

Sep-13

6540

300

1310

220

0

8370

Oct-13

6010

290

980

210

0

7490

Nov-13

5270

270

770

220

0

6530

Dec-13

5380

260

430

230

0

6300

Jan-14

6210

270

400

200

0

7080

Feb-14

8030

280

750

190

0

9250

Mar-14

8540

300

970

210

0

10020

Apr-14

9120

340

1310

220

5

10995

May-14

9570

390

1260

200

16

11436

Jun-14

10230

380

1240

210

22

12082

Jul-14

9580

350

1300

230

26

11486

Aug-14

7680

340

1250

220

14

9504

Sep-14

6870

320

1210

220

15

8635

Oct-14

5930

310

970

230

11

7451

Nov-14

5260

300

650

240

3

6453

Dec-14

4830

290

300

230

1

5651

Month

NA

SA

Europe

Pacific

China

World

Jan-10

6000

200

720

100

0

7020

Feb-10

7950

220

990

120

0

9280

Mar-10

8100

250

1320

110

0

9780

Apr-10

9050

280

1650

120

0

11100

May-10

9900

310

1590

130

0

11930

Jun-10

10200

300

1620

120

0

12240

Jul-10

8730

280

1590

140

0

10740

Aug-10

8140

250

1560

130

0

10080

Sep-10

6480

230

1590

130

0

8430

Oct-10

5990

220

1320

120

0

7650

Nov-10

5320

210

990

130

0

6650

Dec-10

4640

180

660

140

0

5620

Jan-11

5980

210

690

140

0

7020

Feb-11

7620

240

1020

150

0

9030

Mar-11

8370

250

1290

140

0

10050

Apr-11

8830

290

1620

150

0

10890

May-11

9310

330

1650

130

0

11420

Jun-11

10230

310

1590

140

0

12270

Jul-11

8720

290

1560

150

0

10720

Aug-11

7710

270

1530

140

0

9650

Sep-11

6320

250

1590

150

0

8310

Oct-11

5840

250

1260

160

0

7510

Nov-11

4960

240

900

150

0

6250

Dec-11

4350

210

660

150

0

5370

Jan-12

6020

220

570

160

0

6970

Feb-12

7920

250

840

150

0

9160

Mar-12

8430

270

1110

160

0

9970

Apr-12

9040

310

1500

170

0

11020

May-12

9820

360

1440

160

0

11780

Jun-12

10370

330

1410

170

0

12280

Jul-12

9050

310

1440

160

0

10960

Aug-12

7620

300

1410

170

0

9500

Sep-12

6420

280

1350

180

0

8230

Oct-12

5890

270

1080

180

0

7420

Nov-12

5340

260

840

190

0

6630

Dec-12

4430

230

510

180

0

5350

Jan-13

6100

250

480

200

0

7030

Feb-13

8010

270

750

190

0

9220

Mar-13

8430

280

1140

200

0

10050

Apr-13

9110

320

1410

210

0

11050

May-13

9730

380

1340

190

0

11640

Jun-13

10120

360

1360

200

0

12040

Jul-13

9080

320

1410

200

0

11010

Aug-13

7820

310

1490

210

0

9830

Sep-13

6540

300

1310

220

0

8370

Oct-13

6010

290

980

210

0

7490

Nov-13

5270

270

770

220

0

6530

Dec-13

5380

260

430

230

0

6300

Jan-14

6210

270

400

200

0

7080

Feb-14

8030

280

750

190

0

9250

Mar-14

8540

300

970

210

0

10020

Apr-14

9120

340

1310

220

5

10995

May-14

9570

390

1260

200

16

11436

Jun-14

10230

380

1240

210

22

12082

Jul-14

9580

350

1300

230

26

11486

Aug-14

7680

340

1250

220

14

9504

Sep-14

6870

320

1210

220

15

8635

Oct-14

5930

310

970

230

11

7451

Nov-14

5260

300

650

240

3

6453

Dec-14

4830

290

300

230

1

5651

Explanation / Answer

It is typical that costs, demand, or different variables will fluctuate—that is, go up and down in a apparently random method—over time in keeping with a massive number of motives. On the other hand, some alterations over time tend to show a consistent trend—that is, even though costs appear to vary, they are going to tend to move up over time.

In this very particular case the time series analysis is best applicable as several yearss of data are available also the realtionships and trends looks clear and stable.