Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Installation of a certain hardware takes random time with a standard deviation o

ID: 3133213 • Letter: I

Question

Installation of a certain hardware takes random time with a standard deviation of 5 minutes.

(a) A computer technician installs this hardware on 64 different computers with an average installation

time of 42 minutes. Compute a 95% confidence interval for the mean installation time.

(b) Suppose that the population mean installation time is 40 minutes. A technician

installs the hardware on your PC. What is the probability that the installation time will be within the

interval computed in (a)?

(c) A manager questions the assumption of the above. Her pilot sample of 40 installation times has a sample standard deviation of s = 6.2 min, and she says that it is significantly different from the assumed value of standard deviation = 5 min. Do you agree with the manager? Conduct a suitable test of a standard deviation.

Explanation / Answer

a)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    42          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    5          
n = sample size =    64          
              
Thus,              
Margin of Error E =    1.22497749          
Lower bound =    40.77502251          
Upper bound =    43.22497749          
              
Thus, the confidence interval is              
              
(   40.77502251   ,   43.22497749   ) [ANSWER]

**************************

b)

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    40.77502251      
x2 = upper bound =    43.22497749      
u = mean =    40      
n = sample size =    64      
s = standard deviation =    5      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u) * sqrt(n) / s =    1.240036016      
z2 = upper z score = (x2 - u) * sqrt(n) / s =    5.159963984      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.892518963      
P(z < z2) =    0.999999877      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.107480913   [ANSWER]

*************************

c)

Let us test at 0.05 level.

Formulating the null and alternative hypotheses,              
              
Ho:   sigma   =   5  
Ha:    sigma   =/   5  
              
As we can see, this is a    two   tailed test.      
              
Thus, getting the critical chi^2, as alpha =    0.05   ,      
alpha/2 =    0.025          
df = N - 1 =    39          
chi^2 (crit) =    23.65432456   and   58.12005973  
              
Getting the test statistic, as              
s = sample standard deviation =    6.2          
sigmao = hypothesized standard deviation =    5          
n = sample size =    40          
              
              
Thus, chi^2 = (N - 1)(s/sigmao)^2 =    59.9664          
              
As chi^2 is not between the two critical values, we REJECT THE NULL HYPOTHESIS.              
  


Hence, there is significant evidence that the true population standard deviation is not 5 min. [CONCLUSION]