Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

For the Excel file Auto Survey, a. Find the best regression model to predict mil

ID: 3173309 • Letter: F

Question

For the Excel file Auto Survey, a. Find the best regression model to predict miles/ gallon as a function of vehicle age and mileage. b. Using your result from part (a), add the categorical variable Purchased to the model. Does this change your result? Please show how excel formulas were conducted.

file can be downloaded here http://wps.prenhall.com/bp_evans_bus_2/

Auto Survey Gender Type Purchased Vehicle Age Mileage MPG Male Mid-size Used 15 127233 28.7 Female Mid-size New 1 23970 43.4 Male Small New 7 77392 24 Female Large SUV Used 14 185397 15.2 Female Small New 2 26001 37 Female Minivan New 9 180643 20 Male Small Used 6 72083 45.7 Male Small New 11 165353 42 Male Small Used 13 205288 33 Female Small New 7 142897 31 Male Minivan Used 14 182584 12 Male Small SUV Used 13 140479 20 Female Small New 2 22114 28 Female Mid-size New 0.25 3454 28.3 Female Large SUV New 7 130905 21 Female Small Used 10 105628 35 Female Small New 5 48678 30.4 Male Mid-size New 0.5 6849 40.2 Female Small Used 10 137941 30 Female Small SUV New 4 29823 24.9 Male Small SUV Used 14 85763 21 Female Small Used 12 134172 31 Male Mid-size Used 12 86387 27

Explanation / Answer

a).Find the best regression model to predict miles/ gallon as a function of vehicle age and mileage.

Regression Analysis

0.222

Adjusted R²

0.145

n

23

R

0.472

k

2

Std. Error

8.188

Dep. Var.

MPG

ANOVA table

Source

SS

df

MS

F

p-value

Regression

383.63097035

2  

191.81548518

2.86

.0807

Residual

1,340.70816008

20  

67.03540800

Total

1,724.33913043

22  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=20)

p-value

95% lower

95% upper

Intercept

36.1809

3.4528

10.479

1.43E-09

28.9784

43.3834

Mileage

-0.00000806

0.00004863

-0.166

.8701

-0.00010950

0.00009339

Vehicle Age

-0.7664

0.6306

-1.215

.2384

-2.0818

0.5490

Estimated regression line

MPG = 36.1809 – 0.00000808*mileage-0.7664* Vehicle Age

b. Using your result from part (a), add the categorical variable Purchased to the model. Does this change your result?

Coding categorical variable Purchased   used=1 and new=0

Regression Analysis

0.286

Adjusted R²

0.173

n

23

R

0.534

k

3

Std. Error

8.052

Dep. Var.

MPG

ANOVA table

Source

SS

df

MS

F

p-value

Regression

492.58818830

3  

164.19606277

2.53

.0876

Residual

1,231.75094213

19  

64.82899695

Total

1,724.33913043

22  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=19)

p-value

95% lower

95% upper

Intercept

37.2519

3.4946

10.660

1.86E-09

29.9376

44.5661

Mileage

0.00001975

0.00005241

0.377

.7105

-0.00008995

0.00012946

Vehicle Age

-1.6820

0.9399

-1.790

.0895

-3.6492

0.2851

purchased

7.6036

5.8651

1.296

.2104

-4.6722

19.8793

Yes, by adding the variable purchased has changed the results.

R square value changed from 0.222 to 0.286.

c. Determine whether any significant interaction exists between Vehicle Age and Purchased variables.

Regression Analysis

0.419

Adjusted R²

0.290

n

23

R

0.647

k

4

Std. Error

7.461

Dep. Var.

MPG

ANOVA table

Source

SS

df

MS

F

p-value

Regression

722.31655393

4  

180.57913848

3.24

.0360

Residual

1,002.02257650

18  

55.66792092

Total

1,724.33913043

22  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=18)

p-value

95% lower

95% upper

Intercept

33.7957

3.6580

9.239

2.98E-08

26.1105

41.4809

Mileage

-0.00001946

0.00005227

-0.372

.7140

-0.00012926

0.00009035

Vehicle Age

-0.3346

1.0948

-0.306

.7634

-2.6345

1.9654

purchased

29.2806

11.9751

2.445

.0250

4.1218

54.4394

vage*purc

-2.4231

1.1928

-2.031

.0572

-4.9291

0.0829

Test for interaction between Vehicle Age and Purchased variables, t=-2.031, P=0.0572 which is > 0.05 level of significance.

The interaction is not significant.

Regression Analysis

0.222

Adjusted R²

0.145

n

23

R

0.472

k

2

Std. Error

8.188

Dep. Var.

MPG

ANOVA table

Source

SS

df

MS

F

p-value

Regression

383.63097035

2  

191.81548518

2.86

.0807

Residual

1,340.70816008

20  

67.03540800

Total

1,724.33913043

22  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=20)

p-value

95% lower

95% upper

Intercept

36.1809

3.4528

10.479

1.43E-09

28.9784

43.3834

Mileage

-0.00000806

0.00004863

-0.166

.8701

-0.00010950

0.00009339

Vehicle Age

-0.7664

0.6306

-1.215

.2384

-2.0818

0.5490