Refer to the Buena School District bus data. a. Select the variable for the numb
ID: 3178991 • Letter: R
Question
Refer to the Buena School District bus data.
a. Select the variable for the number of miles traveled last month. Conduct a test of
hypothesis to determine whether the mean number of miles traveled is equal to 840.
Use the .01 significance level. Find the p-value and explain what it means.
b. Using the maintenance cost variable, conduct a test of hypothesis to determine whether
the mean maintenance cost is less than $500 at the .05 significance level. Determine the
p-value and interpret the result.
Variables are :
Maintenance Miles X2 X4 329 853 503 883 505 822 466 865 359 751 546 870 427 780 474 857 382 818 422 869 433 848 474 845 558 885 561 838 357 760 329 741 497 859 459 826 355 806 489 858 436 785 455 828 514 980 503 857 380 803 432 819 478 821 406 798 471 815 444 757 493 1008 452 831 461 849 496 839 469 812 442 809 414 864 459 859 457 815 462 799 570 844 439 832 369 842 390 792 469 775 381 882 501 874 432 837 392 774 441 823 448 790 468 800 467 827 478 830 515 895 411 804 504 866 504 842 392 851 423 835 410 866 529 846 477 802 540 847 450 856 390 799 424 827 433 817 428 842 494 815 396 784 458 817 493 816 475 816 476 827 403 806 337 819 492 836 426 757 449 817Explanation / Answer
from number of miles
degree of freedom =80-1=79
test stat t=(X-mean)/std error =(830.1125-840)/4.7168 = -2.0962
for above at 79 degree of freedom ; p value =0.0393
as p value is greater then 0.01 level we can not reject that mean is not equal to 840.
b)
here test stat t=(450.2875-500)/6.0023= -8.2822
here p value for above test stat =0
as p value is less then 0.05 level we reject null hypothesis. and accept the claim that mean maintenance cost is less than $500
Miles X4 853 883 822 865 751 870 780 857 818 869 848 845 885 838 760 741 859 826 806 858 785 828 980 857 803 819 821 798 815 757 1008 831 849 839 812 809 864 859 815 799 844 832 842 792 775 882 874 837 774 823 790 800 827 830 895 804 866 842 851 835 866 846 802 847 856 799 827 817 842 815 784 817 816 816 827 806 819 836 757 817 mean(X) 830.1125 std deviation(S) 42.18824 std error =S/(n)1/2 4.716789